News | Stem Cell Therapies | November 13, 2015

Protein Reprogramming Offers Potentially Rich Source of Cardiac Repair Heart Cells

New method could provide safer option for regenerative therapy after a heart attack

protein reprogramming, Stem Cells Translational Medicine, cardiac progenitor cells, CPCs, regenerative therapies

November 13, 2015 — A new study appearing in STEM CELLS Translational Medicine (SCTM) describes a highly efficient, protein-based method for turning fibroblasts — the most common cells in connective tissue — into cardiac progenitor cells (CPCs). The results could lead to a much-needed new source of cells for regenerating the heart. Equally exciting is that the technology also converts the fibroblasts directly to CPCs, skipping an in-between and significantly speeding up the process.

Stem cell transplantation has shown great promise in helping repair a damaged heart, but finding the best source of these cells in quantities large enough for clinical application has been a challenge.  Some success in coaxing induced pluipoent stem cells (iPSCs) to become cardiomyocytes (heart muscle cells) has been accomplished using genetics, but safety issues stemming from the integration of foreign genes into the host and from the use of viral vectors are a concern.

Proteins can briefly modulate the gene expression of the host cells, leading to complete transformation of the parental phenotype using a method that is virus-free and does not introduce any foreign genetic material into the recipient’s system. While researchers have had some success in using proteins to reprogram cells, the number of cells that turned into the intended cell types remains low.

In the SCTM study, a team of scientists from Guangdong General Hospital, Guangzhou Medical University (GMU), Guangdong, China, and Wayne State University (WSU), Detroit, Michigan, reported they overcame this problem by using a simple, non-viral based protein delivery system consisting of four modified transcription factors (GHMT) and three growth factors. When fibroblasts from human skin were reprogrammed to become CPCs, the yield of CPCs was 80 percent. When these cells were then transplanted into rat hearts after a heart attack, cardiac function showed improvement.
 
Xi-Yong Yu, M.D., Ph.D., of GMU’s Guangdong Cardiovascular Institute, is co-lead investigator of the study. “The resulting CPCs were similar to cardiac progenitors in appearance, colony formation, activation of cardiac marker genes and cardiac lineage differentiation potential,” he said. “We believe this protein reprogramming strategy lays the foundation for future refinements and might provide a source of CPCs for regenerative approaches.”
 
Co-lead investigator Jianjun Wang, Ph.D., of the Biochemistry and Molecular Biology Department in WSU’s Medical School, added that using undifferentiated CPCs as the building blocks to grow specific types of heart tissue is of great interest for regenerating the myocardium. “However,” he cautioned, “it will be critical to determine whether key physiological properties are faithfully reproduced after reprogramming. Further study is also needed to investigate the characteristics of in vivo differentiated cardiomyocytes and vasculatures [blood vessels] from protein-induced CPCs in their native environment, which might promote survival, maturation and coupling with neighboring cells.”
 
Yigang Wang, M.D., Ph.D., director of regenerative medicine at University of Cincinnati Medical Center, is another noted researcher focused on the technology involved in producing CPCs with high efficiency. He commented on the Yu-Wang team’s findings, saying that he “hopes that it will lead to a new source of abundant seed cells for cardiac tissue engineering in a clinical setting.”
 
“While additional research is needed to fully understand the properties of these cells, the results suggest a potentially safer method to generate cardiac progenitor cells for use as a regenerative therapy after a heart attack,” said Anthony Atala, M.D., editor-in-chief of STEM CELLS Translational Medicine, and director of the Wake Forest Institute for Regenerative Medicine.

For more information: www.stemcellstm.com


Related Content

News | Cardiovascular Clinical Studies

Aug. 15, 2024 — According to a new study being presented at ACC Asia 2024 in Delhi, India, drinking over 400 mg of ...

Home August 14, 2024
Home
Videos | Cardiovascular Clinical Studies

As part of DAIC's continuing Thought Leadership Series, this month Editorial Director Melinda Taschetta-Millane sits ...

Home July 30, 2024
Home
News | Cardiovascular Clinical Studies

July 25, 2024 — BioCardia, Inc., a global leader in cellular and cell-derived therapeutics for the treatment of ...

Home July 25, 2024
Home
News | Cardiovascular Clinical Studies

July 18, 2024 — Elucid, a pioneering AI medical technology company providing physicians with imaging analysis software ...

Home July 18, 2024
Home
News | Cardiovascular Clinical Studies

July 10, 2024 — CellProthera, a private company specializing in cell-based therapies for repairing ischemic tissues, and ...

Home July 10, 2024
Home
News | Cardiovascular Clinical Studies

July 9, 2024 — Microbot Medical Inc. announced the completion of the first procedure in a patient utilizing its LIBERTY ...

Home July 09, 2024
Home
News | Cardiovascular Clinical Studies

June 26, 2024 — Semaglutide, a medication initially developed for type 2 diabetes and obesity, significantly improves ...

Home June 26, 2024
Home
News | Cardiovascular Clinical Studies

June 21, 2024 — Lexicon Pharmaceuticals, Inc. announced that the peer-reviewed Journal of the American College of ...

Home June 21, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — Microbot Medical Inc. announced its agreement with Brigham and Women’s Hospital (BWH), a leading ...

Home June 20, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — A programming algorithm, being tested by HonorHealth Research Institute for those patients with new or ...

Home June 20, 2024
Home
Subscribe Now