News | Cardiac Diagnostics | July 21, 2015

UNC Researchers Find Two Biomarkers Linked to Severe Heart Disease

Findings suggest elevated oxidized LDL cholesterol and fructosamine are signposts for development of severe coronary disease, especially in females

UNC, biomarkers, severe heart disease, fructosamine, LDL cholesterol, Nichols

July 21, 2015 - Insulin resistance affects tens of millions of Americans and is a big risk factor for heart disease. Yet, some people with the condition never develop heart disease, while some experience moderate coronary blockages. Others, though, get severe atherosclerosis – multiple blockages and deterioration of coronary arteries characterized by thick, hard, plaque-ridden arterial walls. Researchers at the University of North Carolina (UNC) School of Medicine created a first-of-its-kind animal model to pinpoint two biomarkers that are elevated in the most severe form of coronary disease.

The study, published in the journal PLoS One, suggests two new targets – oxidized LDL cholesterol and glycated proteins (i.e., fructosamine or hemoglobin A1c) – that researchers can further investigate and perhaps target through medications to help people with insulin resistance avoid the worst kind of heart disease.

"If these correlations were also found in insulin-resistant humans, then we would want to do everything we could to treat them because they would be at a very high risk of developing severe cardiovascular disease," said Timothy Nichols, M.D., professor of medicine and pathology and first author of the PLoS One paper.

Interestingly, Nichols and his colleagues did not set out to pinpoint the two key biomarkers. They wanted to create an insulin-resistant animal model that mimicked human heart disease. They chose pigs, which are metabolically similar to humans and have hearts very much like human hearts. By feeding the animals a diet high in fat and salt over the course of a year, all the pigs became insulin-resistant. That is, their bodies produced a lot of insulin but their cells did not respond to the hormone as well as normal. All the pigs also developed coronary and aortic atherosclerosis. But only about half of the pigs developed the most severe form of the disease.

When the researchers checked the pigs for high levels of insulin resistance, they found no correlation with the most severe atherosclerosis. This was a surprising and unexpected finding.

David Clemmons, M.D., the Sarah Graham Kenan Professor of Medicine, professor of biochemistry and biophysics, and senior author of the PLoS One paper, knew that the scientific literature suggested a correlation between atherosclerosis and glycated proteins – proteins bonded with sugars in blood.

Clemmons and colleagues tested the pigs for high levels of fructosamine and oxidized LDL cholesterol, which are surrogates for high levels of glycated proteins. Sure enough, all the pigs with severe heart disease had elevated levels of fructosamine and oxidized LDL.

"Also, this correlation was more common in females," Clemmons said. Fourteen of the 20 pigs that developed severe atherosclerosis were females. Fourteen of the 17 pigs that did not develop severe atherosclerosis were male. "This surprised me, so I looked in the literature for anything similar."

Clemmons found a study from Finland published in 2005 showing that elevated glycated protein levels were strongly associated with advanced heart disease and increased mortality in women but not in men.

"The underlying causes of this correlation are unknown," Clemmons said. "But now we have a unique animal model that very much mimics what we see in humans. Our model is a good predictor of diet-induced atherosclerosis in females."

A next step could be to study the affected heart tissue to find abnormal biochemical reactions in the cellular pathways involved in glycated proteins and severe coronary disease. This could lead to potential new treatment approaches or tailored dietary interventions.

Clemmons added, "We could also study what's different about these female pigs that make them much more susceptible to severe heart disease, if they have higher levels of glycated proteins."

For more information: www.med.unc.edu


Related Content

News | Cardiac Diagnostics

Aug. 13, 2024 – The traditional lipid panel may not give the full picture of cholesterol-related heart disease risk for ...

Home August 15, 2024
Home
Feature | Cardiac Diagnostics | By Robert L. Quigley, MD, DPhil

Atherosclerotic cardiovascular disease (ASCVD), caused by plaque buildup in arterial walls, is one of the leading causes ...

Home January 23, 2024
Home
News | Cardiac Diagnostics

September 5, 2023 — GE HealthCare announced the launch of a handheld, wireless ultrasound imaging system designed for ...

Home September 05, 2023
Home
Feature | Cardiac Diagnostics | By Kelly Patrick

The global ambulatory diagnostic cardiology market was valued at $2.6 billion in 2022 and is forecast to rise to $3.3 ...

Home May 15, 2023
Home
News | Cardiac Diagnostics

February 8, 2023 — Results of research that identified new causes of Atherosclerotic Coronary Artery Disease, or ASCAD ...

Home February 08, 2023
Home
News | Cardiac Diagnostics

September 15, 2022 - Happitech has announced the launch of its FastStart Research app. The Amsterdam-based digital ...

Home September 15, 2022
Home
Feature | Cardiac Diagnostics | by Kelly Patrick

Like most healthcare markets, the diagnostic cardiology market has had a bumpy ride in recent years. The COVID-19 ...

Home August 23, 2022
Home
Feature | Cardiac Diagnostics | By Adam Saltman, MD, PhD

Before opining on the future of cardiac health, I think it’s important to define what “cardiac health” actually is. If ...

Home May 04, 2022
Home
News | Cardiac Diagnostics

January 31, 2022 — Scientists have developed an artificial intelligence (AI) system that can analyze eye scans taken ...

Home January 31, 2022
Home
News | Cardiac Diagnostics

November 10, 2021 — Abbott released new global market research from its Beyond Intervention initiative, the company’s ...

Home November 10, 2021
Home
Subscribe Now