News | Cardiovascular Clinical Studies | January 27, 2021

Vascular Decalcification as Heart Disease Treatment Examined in $1.8 Million NIH Grant

New York Tech research team uses computational models to map the blood flow impact of increased calcification

Heavily calcified coronary arteries seen on a CT scan of the heart. Research at the New York Institute of Technology will create blood flow modeling to show the impact of calcium in arteries as part of a project to develop treatments to remove calcium.

Heavily calcified coronary arteries seen on a CT scan of the heart. Research at the New York Institute of Technology will create blood flow modeling to show the impact of calcium in arteries as part of a project to develop treatments to remove calcium. 


January 27, 2021 — A New York Institute of Technology research team has secured a five-year $1.8 million grant from the National Institutes of Health (NIH) National Heart, Lung, and Blood Institute for research to improve the understanding of atherosclerosis and deliver a new treatment for heart disease. 

According to the Centers for Disease Control and Prevention (CDC), more than 30 million U.S. adults have been diagnosed with heart disease, which also causes one in every four deaths. Researchers have long believed that atherosclerosis is a risk factor in predicting heart disease-related illness and death. The buildup of calcium salts in blood vessel tissue, known as vascular calcification, is considered an atherosclerosis hallmark, but it is unclear whether calcification causes atherosclerosis or is simply a byproduct. If it is a risk factor, treatments targeting calcification may prevent millions of future heart disease cases and fatalities.

The team, led by Olga V. Savinova, Ph.D., assistant professor of biomedical sciences at New York Institute of Technology College of Osteopathic Medicine (NYITCOM), will use mouse and computer models to investigate whether vascular calcification contributes to the development of atherosclerosis and, if so, whether a decalcification treatment can correct and prevent it. 

"Our overarching goal is to gain a better understanding of how calcification impacts the onset, progression, and treatment of atherosclerosis," said Savinova, who also received a 2018 NIH grant to examine vascular calcification in chronic kidney disease. "We believe calcification is a risk factor for atherosclerosis and one that can be corrected. By inhibiting vascular calcification caused by overactive phosphatase, we may be able to provide a therapy for atherosclerosis."

Savinova's team has collected data that suggests the enzyme phosphatase is responsible for vascular calcification. Their research shows that when a surplus of phosphatase exists in combination with high lipid levels, lipids are retained in the blood vessels, accelerating vessel hardening. Consequently, if the overactive gene responsible for the surplus can be "turned down," preventing its ability to cause calcification, atherosclerosis may also be treated. 

Computational models will map the blood flow impact of increased calcification in mice with high lipid levels. After administering an inhibitor to mitigate excess enzyme activity, the team will monitor for reduced arterial stress. If their approach is successful, it could also prevent harmful changes in the area of the heart containing the aortic valve, which is critical for proper circulation. 

An example of computational fluid dynamics modeling of blood flow inside an artery, from the British Cardiology Society.

An example of computational fluid dynamics modeling of blood flow inside an artery. Image from the British Cardiology Society.

 

Other New York Tech contributors include Dorinamaria Carka, Ph.D., assistant professor of mechanical engineering, who will lead computer simulations studies on blood flow dynamics, Brian Beatty, Ph.D., associate professor of anatomy, and Maria Plummer, M.D., pathologist and associate professor of clinical specialties. Jose Luis Millan, Ph.D., human genetics professor at the Sanford Burnham Prebys Medical Discovery Institute, is also involved. 

The NIH, part of the U.S. Department of Health and Human Services, is the largest biomedical research agency in the world. The grant was supported by the NIH National Heart, Lung, and Blood Institute under Award Number R01HL149864. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
 


Related Content

News | Cardiac Diagnostics

Aug. 13, 2024 – The traditional lipid panel may not give the full picture of cholesterol-related heart disease risk for ...

Home August 15, 2024
Home
Feature | Cardiac Diagnostics | By Robert L. Quigley, MD, DPhil

Atherosclerotic cardiovascular disease (ASCVD), caused by plaque buildup in arterial walls, is one of the leading causes ...

Home January 23, 2024
Home
News | Cardiac Diagnostics

September 5, 2023 — GE HealthCare announced the launch of a handheld, wireless ultrasound imaging system designed for ...

Home September 05, 2023
Home
Feature | Cardiac Diagnostics | By Kelly Patrick

The global ambulatory diagnostic cardiology market was valued at $2.6 billion in 2022 and is forecast to rise to $3.3 ...

Home May 15, 2023
Home
News | Cardiac Diagnostics

February 8, 2023 — Results of research that identified new causes of Atherosclerotic Coronary Artery Disease, or ASCAD ...

Home February 08, 2023
Home
News | Cardiac Diagnostics

September 15, 2022 - Happitech has announced the launch of its FastStart Research app. The Amsterdam-based digital ...

Home September 15, 2022
Home
Feature | Cardiac Diagnostics | by Kelly Patrick

Like most healthcare markets, the diagnostic cardiology market has had a bumpy ride in recent years. The COVID-19 ...

Home August 23, 2022
Home
Feature | Cardiac Diagnostics | By Adam Saltman, MD, PhD

Before opining on the future of cardiac health, I think it’s important to define what “cardiac health” actually is. If ...

Home May 04, 2022
Home
News | Cardiac Diagnostics

January 31, 2022 — Scientists have developed an artificial intelligence (AI) system that can analyze eye scans taken ...

Home January 31, 2022
Home
News | Cardiac Diagnostics

November 10, 2021 — Abbott released new global market research from its Beyond Intervention initiative, the company’s ...

Home November 10, 2021
Home
Subscribe Now