News | CT Angiography (CTA) | August 06, 2019

Artificial Intelligence Improves Heart Attack Risk Assessment

Machine learning model trained on coronary CT angiography images predicts risk of cardiovascular event better than CAD-RADS alone

Artificial Intelligence Improves Heart Attack Risk Assessment

August 6, 2019 — When used with a common heart scan, machine learning, a type of artificial intelligence (AI), does better than conventional risk models at predicting heart attacks and other cardiac events, according to a study published in the journal Radiology.

Heart disease is the leading cause of death for both men and women in the United States. Accurate risk assessment is crucial for early interventions including diet, exercise and drugs like cholesterol-lowering statins. However, risk determination is an imperfect science, and popular existing models like the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries.

Coronary computed tomography arteriography (CCTA), a kind of CT that gives highly detailed images of the heart vessels, is a promising tool for refining risk assessment — so promising that a multidisciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the Coronary Artery Disease Reporting and Data System (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. While CAD-RADS is an important and useful development in the management of cardiac patients, its focus on stenoses may leave out important information about the arteries, according to study lead author Kevin M. Johnson, M.D., associate professor of radiology and biomedical imaging at the Yale School of Medicine in New Haven, Conn.

Read the article "Multi-Society Group Releases CAD-RADS for Standardized Coronary CT Angiography Reporting"

Noting that CCTA shows more than just stenoses, Johnson recently investigated a machine learning (ML) system capable of mining the myriad details in these images for a more comprehensive prognostic picture.

“Starting from the ground up, I took imaging features from the coronary CT,” he said. “Each patient had 64 of these features and I fed them into a machine learning algorithm. The algorithm is able to pull out the patterns in the data and predict that patients with certain patterns are more likely to have an adverse event like a heart attack than patients with other patterns.”

For the study, Johnson and colleagues compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. They followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.

Compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93 percent of patients with events would receive the drug, compared with only 69 percent if CAD-RADS were relied on.

“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS,” Johnson said. “Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk.”

If machine learning can improve vessel scoring, it would enhance the contribution of noninvasive imaging to cardiovascular risk assessment. Additionally, the ML-derived vessel scores could be combined with non-imaging risk factors such as age, gender, hypertension and smoking to develop more comprehensive risk models. This would benefit both physicians and patients.

“Once you use a tool like this to help see that someone’s at risk, then you can get the person on statins or get their glucose under control, get them off smoking, get their hypertension controlled, because those are the big, modifiable risk factors,” he said.

Johnson is currently working on a paper that takes results from this study and folds them into the bigger picture with non-imaging risk factors.

“If you add people’s ages and particulars like smoking, diabetes and hypertension, that should increase the overall power of the method and improve the overall results,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

VIDEO: The Introduction of CAD-RADS - Top News From SCCT 2016

Reference

Johnson K.M., Johnson H.E., Zhao Y., et al. Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning. Radiology, June 25, 2019. https://doi.org/10.1148/radiol.2019182061


Related Content

News | Artificial Intelligence

March 3, 2025 — Microsoft Corp. has unveiled Microsoft Dragon Copilot, an AI assistant for clinical workflow that brings ...

Home March 03, 2025
Home
News | Artificial Intelligence

Feb. 25, 2025 — Heartflow, Inc., a provider of AI technology for coronary artery disease (CAD) management, recently ...

Home February 26, 2025
Home
News | Artificial Intelligence

Feb. 6, 2025 — Eko Health, a leader in applying artificial intelligence (AI) for the early detection of heart and lung ...

Home February 10, 2025
Home
News | Artificial Intelligence

Feb. 4, 2025 — Riverain Technologies recently announced it expanded across eight countries in 2024 and added nearly 50 ...

Home February 04, 2025
Home
News | Artificial Intelligence

Jan. 22, 2025 — Public Responsibility in Medicine and Research (PRIM&R) recently called for establishing clear ethical ...

Home January 23, 2025
Home
News | Artificial Intelligence

Jan. 22, 2025 -- HeartFlow, Inc., a provider of non-invasive artificial intelligence (AI) heart care solutions, and ...

Home January 23, 2025
Home
News | Artificial Intelligence

Dec. 4, 2024 – Cleerly has successfully closed its latest Series C extension funding round, raising a total of $106 ...

Home December 05, 2024
Home
News | Artificial Intelligence

Oct. 30, 2024 — HeartLung Technologies, a developer of AI tools for early detection of heart disease, lung cancer and ...

Home October 30, 2024
Home
News | Artificial Intelligence

Oct. 27, 2024 — Investigators from Gifu Heart Center and Fukuoka Sanno Hospital recently presented the results of the ...

Home October 29, 2024
Home
News | Artificial Intelligence

Oct. 14, 2024 – The Institute for AI Governance in Healthcare (IAIGH) has published the draft Healthcare AI Governance ...

Home October 15, 2024
Home
Subscribe Now