News | Heart Valve Technology | May 14, 2018

3-D Printed Models to Guide TAVR Improve Outcomes

Results presented at SCAI 2018 show novel technology could reduce risks paravalvular leaks

The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.  #SCAI, #SCAI2018

The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.


May 14, 2018 – A new study examines the effectiveness of 3-D printing technology and computer modeling to predict paravalvular leak (PVL) in patients undergoing transcatheter aortic valve replacement (TAVR). A common risk of TAVR is an ill-fitting valve which can lead to PVL. To address this risk, the study used 3-D printing technology to help confirm and detect the location of the leak. The retrospective study was presented today at the Society for Cardiovascular Angiography and Interventions (SCAI) Scientific Sessions.

More than 5 million Americans are diagnosed with heart valve disease each year.[1] TAVR is a procedure used for intermediate, high-risk, and inoperable patients with severe narrowing of the aortic valve where a prosthetic valve is implanted and the damaged valve is replaced. Patients who undergo TAVR, which is a less invasive procedure to replace the heart’s aortic valve, can experience paravalvular leak around the new valve which can lead to higher mortality rates. Therefore, clinicians are exploring ways to find and prevent these leaks from happening. 3D printing has become more popular within the medical space as it has been discovered to be a vital tool to prevent, fix and foresee procedural errors.

In the study, six patients undergoing TAVR for severe, calcific aortic stenosis and at risk for paravalvular leak had pre-procedure computed tomography (CT) images analyzed and segmented for printing of 3D models. The CT scans allowed researchers to see a 360-degree view of the location of the calcium build up while the 3D models allowed researchers to further evaluate the ill-fitting valves. The 3D aortic root models were then implanted with the valve to determine if the size was correct, ultimately revealing where the calcium composites would be. The 3D models were scanned, evaluated for final analysis and then compared to in-vivo implanted TAVR echocardiograms.

Every leak seen on the 3D models were confirmed on the CT digital scans. The 3D models allowed researchers to use prototypes to personalize valve placement, size and location to stop leaks and lower calcium build up.

“We are very encouraged to see such positive outcomes for the feasibility of 3D printing in patients with heart valve disease. These patients are at a high risk of developing a leak after TAVR, and anything we can do to identify and prevent these leaks from happening is certainly helpful,” said lead author Sergey Gurevich, M.D., and cardiovascular fellow at the University of Minnesota in Minneapolis, Minn. “Like any other new technology, as 3D printing evolves, we hope to see an increase in accessibility and opportunity for the use of this technology to help improve patient care.”

The authors call for a functional study to help determine the exact size of the leak. The authors of this study are working with computational fluid dynamics to optimize calculations.

Watch the VIDEO "Applications in Cardiology for 3-D Printing and Computer Aided Design" — interview with Dee Dee Wang, M.D., Director, Structural Heart Imaging at Henry Ford Hospital, Detroit.
 

Complete listing of SCAI 2018 late-breaking trials with links to articles.

Reference: 

1. American Heart Association. Under-recognized heart valve disease kills estimated 25,000 each year. https://news.heart.org/under-recognized-heart-valve-disease-kills-estimated-25000-each-year/. Accessed April 20, 2018.


Related Content

News | Cath Lab

December 20, 2023 — Jason R. McCarthy, Ph.D., associate professor of biomedical research and translational medicine and ...

Home December 20, 2023
Home
News | Cath Lab

October 26, 2023 — Royal Philips, a global leader in health technology, announced the latest results demonstrating the ...

Home October 26, 2023
Home
News | Cath Lab

October 25, 2023 — Shockwave Medical, Inc., a pioneer in the development and commercialization of transformational ...

Home October 25, 2023
Home
News | Cath Lab

October 20, 2023 — Over the coming days, Philips will be presenting its latest solutions in cardiology and new late ...

Home October 20, 2023
Home
News | Cath Lab

October 16, 2023 — GE HealthCare (Nasdaq: GEHC) announced US FDA 510(k) clearance of Allia IGS Pulse - the latest ...

Home October 16, 2023
Home
News | Cath Lab

October 16, 2023 — Shimadzu Medical Systems USA, a subsidiary of Shimadzu Corporation, announced the first U.S ...

Home October 16, 2023
Home
News | Cath Lab

September 13, 2023 — A diagnostic test, first offered in the United States at University Hospitals (UH) Harrington Heart ...

Home September 13, 2023
Home
News | Cath Lab

August 2, 2023 — Teleflex Incorporated, a leading global provider of medical technologies, announced the U.S Food and ...

Home August 02, 2023
Home
News | Cath Lab

July 13, 2023 — Mount Sinai Queens announced the opening of a new cardiac catheterization lab that will provide rapid ...

Home July 13, 2023
Home
News | Cath Lab

June 21, 2023 — Royal Philips, a global leader in health technology, announced it has teamed up with BIOTRONIK (Lake ...

Home June 21, 2023
Home
Subscribe Now