News | January 13, 2008

Decellularization Pumps Life into Heart Created in Lab

January 14, 2008 - Scientists from the University of Minnesota Center for Cardiovascular Repair created a beating heart in the laboratory, according to research published in the online January 13 issue of Nature Medicine.

By using a process called whole organ decellularization, researchers grew functioning heart tissue by taking dead rat and pig hearts and reseeding them with a mixture of live cells.

“The idea would be to develop transplantable blood vessels or whole organs that are made from your own cells,” said Doris Taylor, Ph.D., director of the Center for Cardiovascular Repair, Medtronic Bakken professor of medicine and physiology, and principal investigator of the research.

While there have been advances in generating heart tissue in the lab, creating an entire 3-dimensional scaffold that mimics the complex cardiac architecture and intricacies, has challenged scientists, and decellularization may be a solution to creating a bioartifical heart, Taylor said.

Decellularization is the process of removing all of the cells from an organ - in this case an animal cadaver heart - leaving only the extracellular matrix intact.

After successfully removing all of the cells from both rat and pig hearts, researchers injected them with a mixture of progenitor cells that came from neonatal or newborn rat hearts and placed the structure in a sterile setting in the lab to grow.

The results were very promising, Taylor said. Four days after seeding the decellularized heart scaffolds with the heart cells, contractions were observed. Eight days later, the hearts were pumping.

Researchers hope that the decellularization process could be used to make new donor organs. Because a new heart could be filled with the recipient's cells, researchers hypothesize it’s much less likely to be rejected by the body. And once placed in the recipient, in theory the heart would be nourished, regulated and regenerated similar to the heart that it replaced.

For more information: www1.umn.edu/twincities


Related Content

News | Cardiovascular Clinical Studies

Nov. 18, 2024 — Silence Therapeutics presented end-of-treatment data from its Phase 2 ALPACAR-360 study of zerlasiran, a ...

Home November 18, 2024
Home
News | Cardiovascular Clinical Studies

Aug. 15, 2024 — According to a new study being presented at ACC Asia 2024 in Delhi, India, drinking over 400 mg of ...

Home August 14, 2024
Home
Videos | Cardiovascular Clinical Studies

As part of DAIC's continuing Thought Leadership Series, this month Editorial Director Melinda Taschetta-Millane sits ...

Home July 30, 2024
Home
News | Cardiovascular Clinical Studies

July 25, 2024 — BioCardia, Inc., a global leader in cellular and cell-derived therapeutics for the treatment of ...

Home July 25, 2024
Home
News | Cardiovascular Clinical Studies

July 18, 2024 — Elucid, a pioneering AI medical technology company providing physicians with imaging analysis software ...

Home July 18, 2024
Home
News | Cardiovascular Clinical Studies

July 10, 2024 — CellProthera, a private company specializing in cell-based therapies for repairing ischemic tissues, and ...

Home July 10, 2024
Home
News | Cardiovascular Clinical Studies

July 9, 2024 — Microbot Medical Inc. announced the completion of the first procedure in a patient utilizing its LIBERTY ...

Home July 09, 2024
Home
News | Cardiovascular Clinical Studies

June 26, 2024 — Semaglutide, a medication initially developed for type 2 diabetes and obesity, significantly improves ...

Home June 26, 2024
Home
News | Cardiovascular Clinical Studies

June 21, 2024 — Lexicon Pharmaceuticals, Inc. announced that the peer-reviewed Journal of the American College of ...

Home June 21, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — Microbot Medical Inc. announced its agreement with Brigham and Women’s Hospital (BWH), a leading ...

Home June 20, 2024
Home
Subscribe Now