News | Stem Cell Therapies | February 16, 2016

Wisconsin Researchers Transform Common Cell to Master Heart Cell

Technology tested on mice could permit a scalable method for making an almost unlimited supply of the three major types of cells in the heart

cardiac progenitor cells, UW-Madison study, mouse fibroblasts

Induced cardiac progenitor cells (iCPCs) injected into hearts of mice with experimentally induced heart attacks generate new heart muscle. Newly developed heart muscle cells are shown by overlapping red (heart muscle protein) and green (iCPC protein) labeling, and cell nuclei are shown in blue. Image courtesy of Pratik Lalit.


February 16, 2016 — By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin-Madison have generated master heart cells — primitive progenitors that form the developing heart.

Writing online Feb. 11 in the journal Cell Stem Cell, a team led by cardiologist Timothy J. Kamp, M.D., reports transforming mouse fibroblasts, cells found mostly in connective tissue such as skin, into primitive master heart cells known as induced cardiac progenitor cells. The technology could permit a scalable method for making an almost unlimited supply of the three major types of cells in the heart. If replicated in human cells, the feat could one day fuel drug discovery, powerful new models for heart disease and the raw material for treating diseased hearts.

The lead author of the new study, UW-Madison postdoctoral fellow Pratik A. Lalit, found that 11 genes that play a central role in embryonic heart development could be used to reprogram the fibroblasts. He and his colleagues then narrowed the number of essential genes to five. Importantly, the group also defined the conditions necessary for the transformed cells to be effectively cultured in the laboratory.

Using the five genes, Lalit, Kamp and their team could push the fibroblast cells back in developmental time to become the cardiac progenitor cells that make cardiomyocytes, smooth muscle cells and endothelial cells — the trio of workhorse cells that make up the organ. The induced cardiac progenitor cells are capable of making billions of the critical heart cells, providing ample material to study heart disease in the laboratory dish, equip high-throughput screens to test various compounds for safety and efficacy, and ultimately, to treat heart disease by replacing diseased cells with healthy ones.

“Because the reprogrammed cells are actively dividing, we can generate billions of cells with relative ease,” said Kamp, who also co-directs the UW-Madison Stem Cell and Regenerative Medicine Center.

The study, explains Lalit, was like an exercise in reverse engineering: observing the genetic factors in play as the heart develops in a mouse embryo and using those to direct the fibroblast down the cardiac developmental pathway or lineage. “We’re learning from what happens in the embryo during cardiac development,” he said. “What does it take to make a normal heart?”

A key advantage of the engineered cardiac progenitor cells, noted Kamp, is that unlike all-purpose pluripotent stem cells — which can become any of the 220 different kinds of cells in the human body — the induced progenitor cells made from fibroblasts are faithful only to the cardiac lineage, a desired feature for cardiac applications. A potential drawback of cell transplants derived from all-purpose stem cells is the small but very real possibility of creating a teratoma, a tumor from tissue other than the intended cell lineage.

“With cardiac progenitor cells, you can reduce the risk of tumor formation as they are more committed to the heart lineages and are unlikely to form a tumor,” said Kamp.

Lalit and Kamp’s team tested the new cells in mice by experimentally inducing heart attacks. Injecting the engineered cells into the damaged hearts of mice, they observed the cells migrating to the damaged part of the heart and making cardiomyocytes — the heart cells that contract to underpin the beating of the heart — as well as smooth muscle and endothelial cells, key cells that form blood vessels. The implanted cells led to an uptick in survival of the heart-impaired mice.

The work was completed by a team of Wisconsin investigators, funded through the National Heart, Lung and Blood Institute’s Progenitor Cell Biology Consortium, part of the National Institutes of Health, and the American Heart Association. Contributing to the work were scientists from the University of Minnesota.

For more information: www.cell.com/cell-stem-cell


Related Content

News | Cardiovascular Clinical Studies

Nov. 18, 2024 — Silence Therapeutics presented end-of-treatment data from its Phase 2 ALPACAR-360 study of zerlasiran, a ...

Home November 18, 2024
Home
News | Cardiovascular Clinical Studies

Aug. 15, 2024 — According to a new study being presented at ACC Asia 2024 in Delhi, India, drinking over 400 mg of ...

Home August 14, 2024
Home
Videos | Cardiovascular Clinical Studies

As part of DAIC's continuing Thought Leadership Series, this month Editorial Director Melinda Taschetta-Millane sits ...

Home July 30, 2024
Home
News | Cardiovascular Clinical Studies

July 25, 2024 — BioCardia, Inc., a global leader in cellular and cell-derived therapeutics for the treatment of ...

Home July 25, 2024
Home
News | Cardiovascular Clinical Studies

July 18, 2024 — Elucid, a pioneering AI medical technology company providing physicians with imaging analysis software ...

Home July 18, 2024
Home
News | Cardiovascular Clinical Studies

July 10, 2024 — CellProthera, a private company specializing in cell-based therapies for repairing ischemic tissues, and ...

Home July 10, 2024
Home
News | Cardiovascular Clinical Studies

July 9, 2024 — Microbot Medical Inc. announced the completion of the first procedure in a patient utilizing its LIBERTY ...

Home July 09, 2024
Home
News | Cardiovascular Clinical Studies

June 26, 2024 — Semaglutide, a medication initially developed for type 2 diabetes and obesity, significantly improves ...

Home June 26, 2024
Home
News | Cardiovascular Clinical Studies

June 21, 2024 — Lexicon Pharmaceuticals, Inc. announced that the peer-reviewed Journal of the American College of ...

Home June 21, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — Microbot Medical Inc. announced its agreement with Brigham and Women’s Hospital (BWH), a leading ...

Home June 20, 2024
Home
Subscribe Now