Feature | May 28, 2015

Researchers Create "CyberHeart" Platform for Advanced Medical Device Development

Project supported by a $4.2 million 5-year NSF grant

CyberHeart, Stony Brook, NSF grant, $4.2 million, Scott Smolka

These images using the CyberHeart platform capture highly detailed multi-scale modeling and simulation of electrical patterns in the heart (spiral waves) representative of potentially fatal cardiac arrhythmias. Image courtesy of Stony Brook University.


May 28, 2015 — A virtual-heart platform proposed by Stony Brook University researchers and colleagues has received funding from the National Science Foundation (NSF) in the amount of $4.2 million over five years. The platform was designed to improve and accelerate medical-device development and testing.

The “Cyberheart” project, led by Scott Smolka, a professor of computer science at Stony Brook University, is part of the NSF’s center-scale initiative to advance the state-of-the-art in cyber-physical systems (CPS) — engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care, and potentially speed up disease diagnosis and prevention.

The Stony Brook-led project includes collaborators from seven leading universities and centers working together to develop far more realistic cardiac and device models than currently exist. This "CyberHeart" platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design optimal, patient-specific device therapies, thereby lowering the risk to the patient.

"Innovative 'virtual' design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible," said Smolka. "We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification.”

The group's approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

For more information: www.stonybrook.edu


Related Content

News | Cardiovascular Clinical Studies

Aug. 15, 2024 — According to a new study being presented at ACC Asia 2024 in Delhi, India, drinking over 400 mg of ...

Home August 14, 2024
Home
Videos | Cardiovascular Clinical Studies

As part of DAIC's continuing Thought Leadership Series, this month Editorial Director Melinda Taschetta-Millane sits ...

Home July 30, 2024
Home
News | Cardiovascular Clinical Studies

July 25, 2024 — BioCardia, Inc., a global leader in cellular and cell-derived therapeutics for the treatment of ...

Home July 25, 2024
Home
News | Cardiovascular Clinical Studies

July 18, 2024 — Elucid, a pioneering AI medical technology company providing physicians with imaging analysis software ...

Home July 18, 2024
Home
News | Cardiovascular Clinical Studies

July 10, 2024 — CellProthera, a private company specializing in cell-based therapies for repairing ischemic tissues, and ...

Home July 10, 2024
Home
News | Cardiovascular Clinical Studies

July 9, 2024 — Microbot Medical Inc. announced the completion of the first procedure in a patient utilizing its LIBERTY ...

Home July 09, 2024
Home
News | Cardiovascular Clinical Studies

June 26, 2024 — Semaglutide, a medication initially developed for type 2 diabetes and obesity, significantly improves ...

Home June 26, 2024
Home
News | Cardiovascular Clinical Studies

June 21, 2024 — Lexicon Pharmaceuticals, Inc. announced that the peer-reviewed Journal of the American College of ...

Home June 21, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — Microbot Medical Inc. announced its agreement with Brigham and Women’s Hospital (BWH), a leading ...

Home June 20, 2024
Home
News | Cardiovascular Clinical Studies

June 20, 2024 — A programming algorithm, being tested by HonorHealth Research Institute for those patients with new or ...

Home June 20, 2024
Home
Subscribe Now