Feature | November 26, 2013

Diamond Flaws Pave Way for Nanoscale MRI

mri systems contrast media diamonds nanodiamonds cambridge

November 26, 2013 — Researchers say they have achieved enough coherence of the magnetic moment inherent in the defects of miniscule diamond fragments to harness their potential for precise quantum sensors in a material that is biocompatible.
 
Nanoscopic thermal and magnetic field detectors, which can be inserted into living cells, could enhance our understanding of everything from chemical reactions within single cells to signaling in neural networks and the origin of magnetism in novel materials.
 
Atomic impurities in natural diamond structure give rise to the color seen in rare and coveted pink, blue and yellow diamond. But these impurities are also a major research focus in emerging areas of quantum physics.
 
One such defect, the nitrogen-vacancy center (NVC), consists of a gap in the crystal lattice next to a nitrogen atom. This system tightly traps electrons whose spin states can be manipulated with extreme precision.
 
Electron coherence, the extent to which the spins of these particles can sustain their quantum mechanical properties, has been achieved to high levels in the NVCs of large “bulk” diamonds, with coherence times of an entire second in certain conditions — the longest yet seen in any solid material.
 
However, in nanodiamonds — nanometer-sized crystals that can be produced by milling conventional diamond — any acceptable degree of coherence has, until now, been elusive.
 
Nanodiamonds offer the potential for both extraordinarily precise resolution, as they can be positioned at the nano-scale, and biocompatibility, as they have can be inserted into living cells. But without high levels of coherence in their NVCs to carry information, these unique nanodiamond benefits cannot be utilized.
By observing the spin dynamics in nanodiamond NVCs, researchers at Cavendish Laboratory, University of Cambridge, identified that it is the concentration of nitrogen impurities that impacts coherence rather than interactions with spins on the crystal surface.
 
By controlling the dynamics of these nitrogen impurities separately, they increased NVC coherence times to a record 0.07 milliseconds longer than any previous report, an order of significant magnitude that puts nanodiamonds back in play as an extremely promising material for quantum sensing. The results were published the journal Nature Materials.
 
"Our results unleash the potential of the smallest magnetic field and temperature detector in the world,” said Helena Knowles, M.Sc. and researcher on the study. “Nanodiamond NVCs can sense the change of such features within a few tens of nanometers — no other sensor has ever had this spatial resolution under ambient conditions. We now have both high spin coherence and spatial resolution, crucial for various quantum technologies."
 
Dhiren Kara, Ph.D. and researcher on the study, pointed out that the nanodiamond's biocompatibility can provide non-invasive optical access to magnetic changes within a living cell — essentially the ability to perform magnetic resonance imaging (MRI) and detect, for instance, a cell's reaction to a drug in real time.
 
"We may also be able to answer some key questions in material science, such as magnetic ordering at the edges of graphene or the origin of magnetism in oxide materials," said Kara.
 
"The pursuit of simultaneous high NVC coherence and high spatial resolution, and the fact that nanodiamonds couldn't deliver on this promise until now, has required researchers to invest in alternative means including advanced nanofabrication techniques, which tends to be both expensive and low-yield,” said Mete Atature, Ph.D. and director of the research. “The simplest solution — feasible and inexpensive — was in front of us the whole time."
 
For more information: www.phy.cam.ac.uk, www.rsna.org

Related Content

News | Contrast Media

August 17, 2023 — University of Missouri School of Medicine neurologist Adnan Qureshi, MD recently led a study that ...

Home August 17, 2023
Home
News | Contrast Media

July 3, 2023 — According to an accepted manuscript published in ARRS’ own American Journal of Roentgenology (AJR) ...

Home July 03, 2023
Home
News | Contrast Media

May 11, 2021 — The American Institute of Ultrasound in Medicine (AIUM) and the American Society of Echocardiography (ASE ...

Home May 11, 2021
Home
Technology | Contrast Media

July 15, 2019 — The U.S. Food and Drug Administration (FDA) has approved Gadavist injection for use in cardiac magnetic ...

Home July 15, 2019
Home
Videos | Contrast Media

Sharon Mulvagh, M.D., FASE, FACC, FRCPC, professor of medicine, division of cardiology, Dalhousie University, Halifax ...

Home June 28, 2019
Home
Feature | Contrast Media | Dave Fornell, Editor

Iodine-based contrast agents used in computed tomography (CT) and catheter-based angiography have been implicated as a ...

Home May 31, 2019
Home
News | Contrast Media

May 9, 2019 — Osprey Medical announced the launch of DyeMINISH, a global patient registry to evaluate the ongoing safety ...

Home May 09, 2019
Home
News | Contrast Media

November 30, 2018 — VigiLanz and Cincinnati Children’s Hospital Medical Center recently announced a collaboration that ...

Home November 30, 2018
Home
News | Contrast Media

In February 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Maryland, to explore ...

Home September 12, 2018
Home
News | Contrast Media

January 19, 2018 — Ligand Pharmaceuticals Inc. announced initiation of a program to develop contrast agents with reduced ...

Home January 19, 2018
Home
Subscribe Now